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It was noted in [1-3] that one of the deficiencies of the two-fluid model is the possi- 
bility of intersection of the particle trajectories and as a result an infinite mean dens- 
ity of particles at the intersection points. It was suggested in [2] that for flows with 
Kn << i there should be clusters of densely packed particles at the intersection points of 
the particle trajectories due to particle collisions. In the present paper we consider the 
case Kn >> i. The ensemble of particles is described with the help of the collisionless kin- 
etic equation. It is shown that in this model intersections of the particle trajectories 
are possible, and that the mean particle density remains finite everywhere. We study the 
stability of the flow of the mixture of gas and particles against small perturbations in the 
framework of our model. Unlike the two-fluid model [i, 2, 4] the perturbations are bounded 
and their amplitude is inversely proportional to the width of the velocity distribution func- 
tion of the particles raised to a fractional power. The finite amplitude of the perturba- 
tions in [2] results from collisions in the particle "gas." 

i. The kinetic equation for the particles in the collisionless limit can be found from 
the equations of [5]. Neglecting collisions and the diffusion of particles in velocity space 
(small m2), it has the form 

ot §  v g--~2--~22V p .  -a-•--t- au 2[. �9 ~" = 0 ,  ( 1 . 1 )  

where ul(t, r) and p(t, r) are the velocity and pressure of the gas; u 2 and P22 are the ve- 
locity and true density of the particles, ~r(t, r, u 2) is the single-particle distribution 
function of the particles, g is the acceleration of gravity, �9 is the relaxation time, and 
m 2 is the volume concentration of particles. 

The above simplifications occur when the following inequality is satisfied: 

K n ~ , d / m 2 L > > i .  ( 1 . 2 )  

H e r e  d i s  t h e  d i a m e t e r  o f  a p a r t i c l e  and  L i s  t h e  c h a r a c t e r i s t i c  l e n g t h  o f  t h e  v a r i a t i o n  o f  
t h e  mean f l o w  p a r a m e t e r s .  E q u a t i o n s  f o r  t h e  mean q u a n t i t i e s  a r e  d e t e r m i n e d  a s  i n  [5 ]  

~-oo too 

--oo 

Neglecting the effects of heat exchange between the gas and the particles, the system (I.i)- 
(1.3) is closed by the equations for the gas phase obtained in [6]: 

0 
0p~ + _~ (plu~) _-- 0, Pl = Puml, ml + m2 = i, (1.4) 
0t 

p~ ~ = P~g - -  ralVP - -  P2 . - '  dt Ot + u~ "V~' 

P = P(Pu), P2~ = const,  P2 = p22m2, 

w h e r e  P l l  i s  t h e  t r u e  d e n s i t y  o f  t h e  g a s ,  m~ i s  t h e  v o l u m e  c o n c e n t r a t i o n  o f  t h e  g a s ,  and  <u2> 
is the average velocity of the particles. 

Equation (i.i) is represented in the form 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
2, pp. 93-101, March-April, 1986. Original article submitted July 14, 1984. 

242 0021-8944/86/2702-02425 12.50 �9 1986 Plenum Publishing Corporation 



D 3Z-/D t = - -~"0F' /Ou2,  

D / D t  = O/c)t § u20/0r -t- F0/0u2, F '  = ( l l  I - -  u 2 ) / " f  , 

and its general solution is written in the form 

~ ( t , r ,  u2) 9r'o(t ~ * * dt~ 

o * *  ( t  o * *" t , r2~  I l2 )  ~ I12 U 2 = t , r~, u2), 

u~ = u~ ]t=~o, r2 = r~ l,=to" 

( 1 . 5 )  

}{ere the integral is taken along the characteristics determined by the second and third equa- 
tions in (1.5), and ~r0 is an arbitrary function. Multiplying (i.i) by 1 and u2, respective- 
ly, and integrating with respect to u 2 from -~ to +~, we find, in the special case where the 
particle trajectories do not intersect in the region of flow and random motion near the par- 
titles is absent at the initial instant of time, the solution of the system (1.1)-(1.4) re- 
duces to the solution obtained with the two-fluid model. 

2. We consider a one-dimensional problem on the decay of a discontinuity in the mixture 
of gas and solid particles in the region Dz{ -~ < x 2 < +~, t >= 0}. The volume concentration 
of particles m= will be assumed to be so small that it is possible to neglect the effect of 
the particles on the gas. Assuming u I = const, p = const, P11 = const, g = 0, we transform 
i=he system (].i)-(1.3) to the form 

o:g'ot +u2-g~2+~-ff~205" o ( u l - - u  2 .~  i t ' )  = 0, ( 2 . 1 )  

+co + ~  

S m 2 = :~-du~, <u2> = ~ u2$rdu 2. 
- -  o o  - - o o  

]For system (2.1) in the region Dz we have the following initial conditions: 

~ 0 ( t = 0 ) = ~ e x p  2z ' 

u~ (x2) ---- w: - -  w = arctg a x e ,  

w* = (w 1 + w2)/2, w ~ --_ (u, 1 - -  w2)/~ , 

w 1 > w~ > ux > 0,: 

w h e r e  u 2 ~  i s  a " s m e a r e d "  s t e p  f u n c t i o n  w i t h  w i d t h  5x 2 1 / a  and  u2 ~ + w 1 when x 2 + - ~  and  
u2 ~ + w 2 when x 2 + +~.  The c h a r a c t e r i s t i c s  o f  Eq. ( 2 . 1 )  a r e  d e t e r m i n e d  f r o m  t h e  e q u a t i o n s  

d x / d t  = u2, d u J d t  = (u~ - -  u2)/T. ( 2 . 3 )  

I n t r o d u c i n g  t h e  n o t a t i o n  u2*  = u 2 ( t  = 0 ) ,  x2* = x 2 ( t  = 0 ) ,  we o b t a i n  f rom ( 2 . 3 )  

u s  = + - e 

Z 2 = Z$ ~- [~1 t ~- ( U ;  - -  U l )  K, K = ~ ( 1  - -  e - t / x ) .  

S u b s t i t u t i n g  ( 2 . 2 )  i n  ( 1 . 5 )  and  i n t r o d u c i n g  a c h a n g e  o f  v a r i a b l e s  

Ou 2 , du2 = ~ du~ = e-t/~ du~ , 

we find 

m 2 ~ - -  

~-oo 

. , _ _  e x p  * 
2r (2.4) 

The integral (2.4) is evaluated by the saddle-point method for fixed values of t and x 2. 
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The function ~ (u2* , t, x 2) = (u2* - w s + w ~ arctan ax2*) 2 is expanded in a Taylor series 
up to terms of order (y - u2*) 2, where y and x2* are determined from the system of equations 

y - - w  ~+ w arc tgax 2 =O,x 2 + u:t +(y--ul )  K - - x  2=0. (2.5) 

Substituting (2.5) into (2.4) we have 

o/i =z,,=, i+ (ax~)~  xz=x2 -k.u~(t--K)+uz ( 2 . 6 )  

Here t and x 2 are fixed and n is the number of roots of the second equation of (2.6), which 
is solved graphically (Fig. i), where Y = w ~arctanax2* - w s, X = (x2* - x 2 + u:(t - K))/K. 
The root is given by the intersection point of the straight line X and the curve Y, i.e., 
(Y = X). It follows from the results shown in Fig. i that in the region bounded by the lines 
passing through the points (v-, ~+) and (v+, ~-), the number of roots is n = 3 and elsewhere 
n = i. Differentiating the second equation of (2.6), we obtain 

(~ x2 ~ :z w": K 
ex-TL= t ~+(~x;)~' h~c~ (2.7) 

a x  2 , 
- - : - : > 0 ,  -- ~ < x 2  < ~ - ( t ) ,  
0Z 2 

a,~ * "- t -:-~, < o ,  V ( t ) < z ,  < ~  (), 
<Tx:~ 

r)x2 ~+ * 
7 : > 0 ,  ( t ) < x 2 < +  co, 
Oz 2 

@x 2 , ~+ * 
e~ = o ,  ~,_, = ( t ) ,  x~ = , ~ -  ( t ) ,  

" V~.:K-~; ~SK>J. where ~:( t )  =• 

Thus the trajectories in the (t, x 2) plane will have the form shown in Fig. 2. 
curve F I is the caustic and is defined by the equations 

x2= u, (t--  K) § w~K +__ (--~ V w a a K - -  '--wnKarGtg ]ff w~aK =t), 

t + = - ~  l~  ( i - 1 / ~ : ~ ) ,  z t  = ~:+ + t / ( ~ ) ( ~ - u , ) .  

The 

On the caustic we have the condition 8x2/Sx2* = 0 [7]; therefore, in view of (2.6) and (2.7) 
the quantity m 2 goes to infinity on F I. The solution on the caustic can be found if we ex- 
pand ~ to order (y - u2*) 4 [the coefficient in front of (y - u2*) 2 is zero on F1]. Substi- 
tuting this expansion into (2.4), we obtain the following result on FI: 

~ ~" V:-~:/' 2'/' (~~::" ~ = (t)" ( 2 . 8 )  

Here r is the gamma function and o/(w~) 2 << I (from the convergence condition on the series). 
The solution is valid everywhere on F I except at the point (t +, x+2) where m 2 ~ ~. Similarly, 
keeping terms of order (y - u2*) s in the expansion of ~, we find the solution at the point 
(t +, x2 +) 

m~ + ,~,  _ _  ]/~-~o:/a 3 (~aw~K3):/a~ aw'~K = t. ( 2 . 9 )  

The applicability condition for this solution [using (2.9) and Kn >> i] has the form 

m~+ << I, ~dlm~- >> ~. 
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/ 

Fig. I Fig. 2 F i g .  3 

The solution of the problem considered here with the initial condition u 2 = u2~ 
m 2 = m2 a generally cannot be "obtained in the two-fluid mode/ [6] because inside F l three 
particle trajectories pass through each point. If we introduce two additional phases associ- 
ated with the particles, then a solution of the type (2.6) can be obtained everywhere except 
on Fz where m 2 goes to infinity. When the ensemble of particles is modeled as a continuous 
medium, only one value of the velocity is defined at each point (for a fixed phase) and, 
therefore, cr = 0 and it then follows from (2.8) and (2.9) that m 2 + ~ on F z. We conclude 
that this infinity is irremovable in the framework of a collisionless continuous medium model. 
The singularity in m 2 can be removed by introducing collisions into the particle phase for 
Kn << i [2] or by using the kinetic equation (i.i) for Kn >> i, where Kn ~ d/(m2L) is the 
Knudsen number. Using the inequality o/(w~) 2 << i, aw~K - i and the solution (2.6)-(2.9), 
it is easy to show that the maximum value of m e is attained on the caustic and hence a cluster 
of particles; forms on the caustic. The formation of the cluster results from singularities 
in the behavior of the particle trajectories rather than from collisions between particles, 
as in [2, 3]. 

When the width Ax 2 - i/~ goes to zero (~ + ~) and u2~ transforms into a step func- 
tion, it follows from (2.6) that the solution has the form 

m 2 = ~ m~, 
l = l  

, 0 * Ws [ 9 \ - - I  / , 

/ * - t ,  

The f u n c t i o n  Y = - u 2 ~  * )  i s  shown i n  F i g .  1 by  d a s h e d  c u r v e s  a n d  i n  t h e  r e g i o n  b o u n d e d  by  
t h e  s t r a i g h t  l i n e s  l a n d  2 t h e r e  a r e  two r o o t s  o f  Y = X ( n  = 2)  a n d  one  r o o t  (n  = 1) e l s e -  
w h e r e .  The  c o r r e s p o n d i n g  p a t t e r n  o f  t r a j e c t o r i e s  i s  shown i n  F i g .  3 ,  w h e r e  t h e  p o s i t i o n s  
o f  t h e  c u r w ~ s  r a a r e  d e t e r m i n e d  by  t h e  e q u a t i o n s  

z2 = ul(t - -  K) @ w 2 g ,  x2 = ul(t - - K )  + WlK. 

I n  t h e  r e g i o n  b o u n d e d  by  t h e  c u r v e s  r 2 we h a v e  m 2 = 2m~ ~ and  e l s e w h e r e  m 2 = m2 ~ 

We s t u d y  t h e  s t a b i l i t y  o f  t h e  s t a t i o n a r y  s o l u t i o n  o f  t h e  s y s t e m  ( 1 . 2 ) - ( 1 . 5 )  t o  s m a l l  
p e r t u r b a t i o n s .  I n  t h e  o n e - d i m e n s i o n a l  c a s e ,  n e g l e c t i n g  t h e  v o l u m e  o c c u p i e d  by  t h e  p a r t i c l e s  
( s m a l l  ma) , t h e  s y s t e m  ( 1 . 1 ) - ( 1 . 5 )  c a n  be  w r i t t e n  i n  t h e  f o r m  

aN- agr" ~ ui - -  u 2 
at + u~ T + F 9  z" = O, F = - -  g,~ 

-F,~ q-oo 

tl~2 : ~ ~r'du2, <u2> : m~T ~ ~z2~C'du2, ~)22 ~ coi1st~ 
_~o - o o  

our out t Op m2922 u i -  <u2> 

at + u i  oz ~- Pzt am Px~ "~ g'J 

OPl~ -t- 0 P22 d2 
at ~ (p l~ul)  = O, p = p (P~I),: �9 = ~8~ 

(3.1) 
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The stationary solution of the system of equations (3.1), neglecting the compressibility of 
the gas, is 

0 . O. 1o = (PH, m2, u~ <u2>~ const,j ( 3 . 2 )  

_ .  dpo g (po  + = 
g' dx 

At the instant t = 0 a perturbation of the stationary solution is turned on: 

] = 1~ -+- f '(x), ]'(x) = 6f sin kx,= 5] << I% 

S i n c e  s h o r t - w a v e l e n g t h  p e r t u r b a t i o n s  a r e  o f  t h e  most  i n t e r e s t ,  we c o n s i d e r  t h e  ca se  o f  l a r g e  
k s a t i s f y i n g  t h e  i n e q u a l i t y  k~c 0 >> t ,  and f o r  l o n g - w a v e l e n g t h  p e r t u r b a t i o n s  we o b t a i n  t h e  
i n e q u a l i t y  

d << ~ << (:p22/Pz1)d,: ( 3 . 3 )  

where X = 2~/k and c o i s  t h e  speed of  sound in  t h e  gas .  I t  f o l l o w s  from ( 3 . 1 )  t h a t  t h e  equa-  
t i o n s  for the gas phase are nonlinear and therefore we represent the solution vector for the 
gas phase as a sum 

~.  = ~0 (x) + ~' (x, t) ( r  (x) (p~ (x), u0 (x), 0%), ~,/~0 << i),~ ( 3 . 4 )  

and l i n e a r i z e  t h e  e q u a t i o n s  f o r  t h e  gas abou t  t h e  s t a t i o n a r y  s o l u t i o n  ( 3 . 2 ) .  Taking i n t o  
a c c o u n t  ( 3 . 2 ) - ( 3 . 4 ) ,  we o b t a i n  from t h e  sys t em ( 3 . 1 )  t h e  f o l l o w i n g  e q u a t i o n s ,  a l l  t o  o r d e r  
O(1 /kxco ) :  

at + u~ ~ + F ~  = O, F = u~) /~ ,  

+o0 +oz 
m 2 = #t'du~, <u.z> = t u~-du2 , .u~=a+u, . ,~  ( 3 . 5 )  

- - o o  

. 11, - -  U 2 d x  2 

at " ~ -  "~ ' dt : a + u2, a =const, 
. t t 

~u~ au, ~ oP--i' O, p' ' 2 
at + u~ ~ + 0~1 a~ = = p~Co, 

k p O )  + 

We note that the last three equations of (3.5) describe the propagation of the perturba- 
tions in the gas and do not depend on the parameters of the second phase. This means that 
we can study the equations for the particles without assuming that the perturbations are small, 
whereas for the gas phase it is sufficient to consider the linearized equations for the per- 
turbations. We note that u 2' is not the perturbation of u 2, but the difference of u 2 from 

a ~ <u2>~ 

The initial conditions for the system (3.5) are written in the form 

where 
form, we have, with the help of (3.6), 

ul = ~ (6r sin k ( x - -  (u~ § co)t)  + 6ssin k ( x - -  (u~ --co) t)), 

t 

Pl--L = ~c ~ (6r sin k (x --  (u~ + co) t) " ~ s  sin k (x --  (u~ --  co) t ) ) ,  

~' It=0 = 6~ sin, kx, ( 3 . 6 )  
. ~  (~ + ~,~ ~n kx))~ 

~" I'=0 : ~ e x p (  - ( u 2  "2-$ ] '  

0 m2 = m2 + 6m2 sin kx 

0 i s  d e f i n e d  in  ( 3 . 4 ) .  R e w r i t i n g  t h e  l a s t  t h r e e  e q u a t i o n s  o f  ( 3 . 5 )  in  c h a r a c t e r i s t i c  

(3.7) 
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8r = 8u 1 + c o ~ ,  5s = 6u 1 - -  c o fPllpol ( 3 . 7 )  

Integrating the equation of motion of a particle, we find 

u2 = u'2*e -t/~ -4- e -t/~ u t  ( t ' ,  x e (t')) "~ et'/Tdt, , ( 3 . 8 )  
~ 0  

U 

x 2 = x; + at + u;aK (t) .+ f dt 'e-Vl" f, u', (t".~x~. (t",,,, eV,/,dt,, ' 
o o 

where  K ( t )  = "c(1 - e - t / x ) ;  u l ' ( t " ,  x)  i s  d e t e r m i n e d  by ( 3 . 7 ) .  The s o l u t i o n  o f  t h e  s econd  
e q u a t i o n  o f  ( 3 . 8 )  i s  found  by i t e r a t i o n .  We choose  as t h e  z e r o t h  a p p r o x i m a t i o n  

x(2 ~ = x~ + at + u'2*K (t). ( 3 . 9  ) 

x (0) nto S u b s t i t u t i n g  2 i t h e  f i r s t  e q u a t i o n  o f  ( 3 . 8 )  and t h e  r e s u l t  i n t o  t h e  second  equa-  
t i o n .  we compute xo(1), then x~(2), and so on, by repeating this procedure. Assuming that 
x 2 ( n )  = x2* + a t  +~eK, in  o r d e r  t o  c a l c u l a t e  x 2 ( n + l )  we must  e v a l u a t e  an i n t e g r a l  o f  t h e  form 

t ff 

d t ' e - t " - - ~  - -  (l~b-t" k e K ( t " ) + a  i fr ( k b + t " - - k ~ f ( t  ") a ) ]d t" ,  J sin + --.-Z "sin 
0 0 

where  b= = c 0 - ( u l  ~ - a ) ;  a = kx2*;  kb-T >> 1 ( l a r g e  k ) ;  b + = c o + ( u l  ~ - a ) ;  kb+x >> 1; 
b- > 0 ( s u b s o n i c  w i t h  r e s p e c t  t o  t h e  f l o w  v e l o c i t y ) .  Using t h e  p r o p e r t i e s  o f  i n t e g r a l s  o f  
r a p i d l y  o s c i l l a t i n g  f u n c t i o n s  [ 8 ] ,  we have  

I =  (A - -  eB)K cos ~ + 0 (1 / (~+)  ~ + t / ( o - ) 2 ) ,  

where  ~- = k b - x ;  ~+ = kb+x; 

(3.10) 

A= fs fir B =  6~ f i r  
2~- 2~4; (2o-b-~) + ~ ) "  

Taking into account (3.8) and (3.10), we obtain the n-th iteration 

( 3 . 1 1 )  

where A = B cos kx2*. Using mathematical induction, it is a simple matter to prove that (3.11) 
is the correct solution and the sequence x2(~ x2(I) ..... x2 (n) is a geometric progression 
with a sum equal to 

(o) / A ,*\ h x2=x2 +K[ ,u2 )r A" (3.12) 

Because the integral (3.10) was calculated to within an accuracy of O(i/(m+) 2 + i/(w-)2), 
the final expression for x 2, to the same accuracy, can be written [with the help of (3.12)] 
in the form 

' .X2 ( fs2~__ 2~ -+'fr ) * ( 6s2o_b_ fr '* * = + at + u'2*K + K cos kx2 - -  + 2 - - ~ )  u2 K cos kx 2 . ( 3 . 13  ) x~ 

Equation (3.13) can be obtained from (3.11) if we put n = i, i.e., when it is sufficient to 
use a single iteration. 

Substituting (3.7) and (3.13) into the first equation of (3.8), we have 

) ) ( ~2 ~ U2 *e -~ /T  -}- e - t / ~  ~r  u 2 �9 I i  - -  - 7 1 2  + O (~w) ~, 7 o  ~ 6w (3.14) 
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/ I  
.~1 1 I I I  

Fig. 4 

v �9  P�9 
U 2 %',, =§  )cos ) os 

~ +  - ~'.* ~,, . 
= t/~ + ~ K ~ ~ K, ~ul = 8ul cos kx2, 

(3 .14)  

: a x : ~  [0 u ;~  at fixed t and x 2 and from this result we can compute the partial derivatives k~u,,],\au,2.._~] 

in the form 

az: K/ ( t  t}W K sin kx:) + 0 ~w 
Ou 2 c o ~ (DO I ~ 

t 

Ou'2 '~ k 

8W='~ b- 

As f o l l o w s  f rom ( 3 . 1 ) ,  in  o r d e r  t o  d e t e r m i n e  m 2 and <ua> i t  i s  n e c e s s a r y  t o  e v a l u a t e  t h e  i n -  
t e g r a l  

(3 .15)  

< ~ >  = _ _  _ _  

z i ,  $'%2 
+~ Iv2 --6u2sinkxo. ] 

-~ ] / ~  r (u~) e'/% 2o du2. 

i 

(3 .16 )  

Substituting (3.13) and (3.15) into (3.16) and changing variables: 
�9 t aU; t, 

and using the inequality ~c 0 << I, we have du 2 ---- du2, du 2 =:-~Ou 2 ,, 
, aU 2 

I t : l ,  ~I,~2 
+o0 l u 2 _ 6 u 2 s i n k x  2 ) y <~)> :  m= i ~p(u2) e ~o ,* (3 .17 )  

m2 -1/~-~-~ du2 ; 

�9 x = x 2 + a t + u ~ * K +  ~ " " �9 - ~  ~ cos ~x2. ( 3 . 1 8 )  

Expanding  t h e  a rgument  o f  t h e  e x p o n e n t i a l  a b o u t  i t s  maximum, which  i s  d e t e r m i n e d  f rom t h e  
e q u a t i o n  

we find 

y - -  6u  2 s i n  kx2 (y, t ,  x) O, 

where f is the argument of the exponential in (3.17): 
ing (3.20) into (3.17) we obtain 

/ = (1 + 8u2kK cos kx:  (y, t, x)) 2 (u~ �9 - -  y)2,  

f = (U2'* -- 6u 2sinkx2*) 2. 

+=~ II'+ 

(3 .19 )  

(3 .20 )  

Substitut- 

(3 .21 )  
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where ~ = i,, r = u 2, and n is the number of roots of Eqs. (3.18) and (3.19). Putting ~ = 
I, n = 1 into (3.21) and comparing with the corresponding expression for m 2 obtained in [2] 

with the two-fluid model, we find that they are identical. 

If 6u2k~ < i, then m 2 is finite everywhere in the half-plane t ~ 0, -~ < x < +~ and in 
the opposite case (6u2k~ ~ i) there exist points where m= + ~. Setting the denominator in 
(3.21) equal to zero, we find an equation for a curve in the t, x~* plane on which m 2 is in- 
finite: 

7 I + 6u~kK coskx2 =0. 

Expanding  ( 3 . 2 2 )  we have  

% = ~  +-T-- .  -4-T arcc0s m = 0 , _ l  . . . . .  ( 3 . 2 3 )  

S u b s t i t u t i n g  ( 3 . 2 3 )  i n t o  ( 3 . 1 8 ) ,  we can w r i t e  

x -= ~. ~ + -r--2n'~-+-+ ri  (arccos. 6u~kK~ 1 , q 6 ~ k K ) ~ ,  ~) - - ~ / ( 8 ~ k ~ ) + a t  (t > - - ~  In (l--iZ(Su~k~))). ( 3 . 2 4 )  

Using 113.17), ( 3 . 1 8 ) ,  and ( 3 . 2 2 ) ,  we f i n d  t h a t  on t h e  c u r v e  d e f i n e d  by ( 3 . 2 4 )  t o  w i t h i n  
t e r m s  o f  o r d e r  O(~w) we have  t h e  i d e n t i t y  a x / ~ x j  c = 0; t h e s e  c u r v e s  a r e  c a l l e d  c a u s t i c s  [ 7 ] .  
The d i s t r i b u t i o n  o f  t r a j e c t o r i e s  ( d a s h e d  c u r v e s )  and c a u s t i c s  ( s o l i d  c u r v e s )  a r e  shown f o r  
t h i s  c a s e  in  F i g .  4,  where  t + = -'~ l n ( 1  - 1 /6u2k ' r ) .  The c a l c u l a t i o n  o f  m 2 on t h e  c a u s t i c s  
i s  c a r r i e d  ou t  by e x p a n d i n g  f up t o  t e r m s  o f  t h e  f o u r t h  power ( u 2 ' *  - y ) 4 :  

i ( k K y  ((6u~kK)~ 1) ~ '* ~4 f ~  T -- ku2 -- yJ ' 

and s u b s t i t u t i n g  t h e  r e s u l t  i n t o  ( 3 . 1 7 ) .  We t h e r e b y  f i n d  m 2 on a c a u s t i c  in  t h e  form 

(I-) 9 ~ . m  2 I '  

m~ ~" ( 3 . 2 5 )  
( 2  (kK) - -  

(3.22) 

where r is the gamma function. This formula is valid everywhere on the caustic except the 
point O' (and its neighborhood). At the point O' we have the expansion f ~ (I/36)(6u2(kK)3) 2. 
(u2,, _ y)6 and, therefore, m 2 is given by the formula 

m o~ 

m2 301/a (3.26) 

The applicability condition of (3.26) has the form 

m~<<l, k~m~>>l ,  k d < t ,  

where m2 ! % m2~ o/6u22 < I; m2 ~ << i. 

Therefore, we have shown that in the continuum-discrete model, without taking into ac- 
count the volume of the particles, a small perturbation arising at t = 0 on -~ < x < +~ re- 
mains finite everywhere in the half-plane t > 0, -~ < x < +~. The maximum amplitude of the 
perturbation occurs on the caustics defined by (3.24) and it is inversely proportional to 
the width of the distribution function raised to a fractional power [Eqs. (3.25) and (3.26)], 
whereas in the two-fluid model (also without taking into account the volume of the particles) 
a small perturbation diverges on the caustics according to the law (3.21). 
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CALCULATION OF THE NONEQUILIBRIUM PARAMETERS OF AIR 

AT THE SURFACES OF MODELS AND IN THE WAKES BEHIND THEM 

FOR THE CONDITIONS OF AEROBALLISTIC EXPERIMENTS 

I. G. Eremeitsev and N. N. Pilyugin UDC 629.7.018.3 

The calculation of the nonequilibrium, quasi-one-dimensional flow of chemically reactive 
gas mixtures is of practical interest in connection with the study of relaxation processes, 
obtaining gasdynamic jets for physical measurements, and the investigation of plasma super- 
sonic phenomena in the wake behind a body, etc. 

Calculations of chemically nonequilibrium, supersonic, quasi-one-dimensional flows are 
presented in [1-8] and elsewhere. Here various algorithms are used to solve such problems 
for flows in nozzles and stream tubes near a body. At present the fields of nonequilibrium 
parameters at the surfaces of spherically blunted cones are calculated for certain conditions 
of streamline flow using stream tubes, while calculated results for inviscid flow in wakes 
are absent. In expansion behind the stern cut of a body, where the gas temperature is sharp- 
ly reduced, it is necessary to make additional allowance for important reactions with the 
participation of electrons, negative ions, and polyatomic molecules. Calculations of non- 
equilibrium parameters in the flow over bodies with surfaces of other shapes, in a wide range 
of variation of the initial parameters, are also necessary for the comparison and treatment 
of the results of aeroballistic experiments. However, the absence of calculation methods 
that are convenient and rapid for execution on computers has prevented making such comparative 
investigations and giving practical recommendations up to now. 

The problem of the flow of a chemically nonequilibrium, partially ionized, multicompon- 
ent, inviscid gas from a spherical supersonic source was studied in detail in [9]; from the 
calculations it is seen that in a number of important cases one can use a constant value of 
the effective adiabatic index, making it possible to obtain a one-to-one connection between 
the area of a stream tube and the gas pressure. 

In the present paper we give a single algorithm for the computer calculation of the direct 
and inverse quasi-one-dimensional problems of the flow of chemically nonequilibrium, multicom- 
ponent air. The formulation and ways of solving a number of problems of nonequilibrium aero- 
dynamics are discussed on the basis of the calculation method developed. 

i. Let us consider the steady quasi-one-dimensional flow of a chemically nonequilib- 
rium gas. The system of dimensionless equations describing such flow has the form [i] 

dv dp (i.i) pvS(x)  = i, pv-h-~= d~' 
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